When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kinodynamic planning - Wikipedia

    en.wikipedia.org/wiki/Kinodynamic_planning

    Later they extended the technique to many other cases, for example, to 3D open-chain kinematic robots under full Lagrangian dynamics. [2] [3] More recently, many practical heuristic algorithms based on stochastic optimization and iterative sampling were developed, by a wide range of authors, to address the kinodynamic planning problem. These ...

  3. Kolmogorov microscales - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_microscales

    where ε is the average rate of dissipation of turbulence kinetic energy per unit mass, and; ν is the kinematic viscosity of the fluid.; Typical values of the Kolmogorov length scale, for atmospheric motion in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, η may be much smaller.

  4. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    Stokes problem in a viscous fluid due to the harmonic oscillation of a plane rigid plate (bottom black edge). ... is the kinematic viscosity. The pressure gradient ...

  5. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    [4] [5] [6] A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined.

  6. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    The most prominent example of the classical two-body problem is the gravitational case (see also Kepler problem), arising in astronomy for predicting the orbits (or escapes from orbit) of objects such as satellites, planets, and stars. A two-point-particle model of such a system nearly always describes its behavior well enough to provide useful ...

  7. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_existence...

    In mathematics, the Navier–Stokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...

  8. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Poincaré showed that the three-body problem is not integrable. In other words, the general solution of the three-body problem can not be expressed in terms of algebraic and transcendental functions through unambiguous coordinates and velocities of the bodies. His work in this area was the first major achievement in celestial mechanics since ...

  9. Statically indeterminate - Wikipedia

    en.wikipedia.org/wiki/Statically_indeterminate

    The system becomes an exact constraint kinematic coupling. The solution to the problem is: [2] = = + + = If ...