Search results
Results From The WOW.Com Content Network
They are closely related to spectral methods, but complement the basis by an additional pseudo-spectral basis, which allows representation of functions on a quadrature grid [definition needed]. This simplifies the evaluation of certain operators, and can considerably speed up the calculation when using fast algorithms such as the fast Fourier ...
Ground motion hazard map for Hawaii, based on a 2% probability of exceeding 0.2 second spectral acceleration at 5 Hz in 50 years. Spectral acceleration (SA) is a unit measured in g (the acceleration due to Earth's gravity, equivalent to g-force) that describes the maximum acceleration in an earthquake on an object – specifically a damped, harmonic oscillator moving in one physical dimension.
There are a very large number of ideas that fall under the general banner of pseudospectral optimal control. [7] Examples of these are the Legendre pseudospectral method, the Chebyshev pseudospectral method, the Gauss pseudospectral method, the Ross-Fahroo pseudospectral method, the Bellman pseudospectral method, the flat pseudospectral method and many others.
Peak ground acceleration can be expressed in fractions of g (the standard acceleration due to Earth's gravity, equivalent to g-force) as either a decimal or percentage; in m/s 2 (1 g = 9.81 m/s 2); [7] or in multiples of Gal, where 1 Gal is equal to 0.01 m/s 2 (1 g = 981 Gal).
The Gauss pseudospectral method (GPM), one of many topics named after Carl Friedrich Gauss, is a direct transcription method for discretizing a continuous optimal control problem into a nonlinear program (NLP).
A series of mixed vertical oscillators A plot of the peak acceleration for the mixed vertical oscillators. A response spectrum is a plot of the peak or steady-state response (displacement, velocity or acceleration) of a series of oscillators of varying natural frequency, that are forced into motion by the same base vibration or shock.
The method is pseudo-spectral because temporal derivatives are calculated in the frequency domain with the aid of FFTs. Because the fields are held as functions of time, this enables arbitrary dispersion in the propagation medium to be rapidly and accurately modelled with minimal effort. [ 19 ]
A Shock Response Spectrum (SRS) [1] is a graphical representation of a shock, or any other transient acceleration input, in terms of how a Single Degree Of Freedom (SDOF) system (like a mass on a spring) would respond to that input. The horizontal axis shows the natural frequency of a hypothetical SDOF, and the vertical axis shows the peak ...