Search results
Results From The WOW.Com Content Network
The square has Dih 4 symmetry, order 8. There are 2 dihedral subgroups: Dih 2, Dih 1, and 3 cyclic subgroups: Z 4, Z 2, and Z 1. A square is a special case of many lower symmetry quadrilaterals: A rectangle with two adjacent equal sides; A quadrilateral with four equal sides and four right angles; A parallelogram with one right angle and two ...
An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length. A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles).
giving the basic form of Brahmagupta's formula. It follows from the latter equation that the area of a cyclic quadrilateral is the maximum possible area for any quadrilateral with the given side lengths. A related formula, which was proved by Coolidge, also gives the area of a general convex
Area calculator a: 3: b: 4: c: 5: s: 6: ... the triangle's side lengths and area are integers, ... the expression under the square root is a quadratic polynomial of ...
That is, the area of the rectangle is the length multiplied by the width. As a special case, as l = w in the case of a square, the area of a square with side length s is given by the formula: [1] [2] A = s 2 (square). The formula for the area of a rectangle follows directly from the basic properties of area, and is sometimes taken as a ...
Any square can be inscribed in a circle whose center is the center of the square. If the common length of its four sides is equal to a {\displaystyle a} then the length of the diagonal is equal to a 2 {\displaystyle a{\sqrt {2}}} according to the Pythagorean theorem , and Ptolemy's relation obviously holds.
For a cube the lateral surface area would be the area of the four sides. If the edge of the cube has length a, the area of one square face A face = a ⋅ a = a 2. Thus the lateral surface of a cube will be the area of four faces: 4a 2. More generally, the lateral surface area of a prism is the sum of the areas of the sides of the prism. [1]
Heron's formula for the area of a triangle can be re-written as using the sums of squares of a triangle's sides (and the sums of the squares of squares) The British flag theorem for rectangles equates two sums of two squares; The parallelogram law equates the sum of the squares of the four sides to the sum of the squares of the diagonals