Search results
Results From The WOW.Com Content Network
Given a polynomial equation or a system of polynomial equations it is often useful to compute or to bound the number of solutions without computing explicitly the solutions. In the case of a single equation, this problem is solved by the fundamental theorem of algebra, which asserts that the number of complex solutions is bounded by the degree ...
If a second-order differential equation has a characteristic equation with complex conjugate roots of the form r 1 = a + bi and r 2 = a − bi, then the general solution is accordingly y(x) = c 1 e (a + bi )x + c 2 e (a − bi )x.
For simple roots, this results immediately from the implicit function theorem. This is true also for multiple roots, but some care is needed for the proof. A small change of coefficients may induce a dramatic change of the roots, including the change of a real root into a complex root with a rather large imaginary part (see Wilkinson's polynomial).
A linear differential equation is homogeneous if it is a homogeneous linear equation in the unknown function and its derivatives. It follows that, if φ(x) is a solution, so is cφ(x), for any (non-zero) constant c. In order for this condition to hold, each nonzero term of the linear differential equation must depend on the unknown function or ...
Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.
An algorithmic solution was found by Charles Delzell in 1984. [7] A result of Albrecht Pfister [8] shows that a positive semidefinite form in n variables can be expressed as a sum of 2 n squares. [9] Dubois showed in 1967 that the answer is negative in general for ordered fields. [10]
One may now proceed as in the differential equation case, since the general solution of an N-th order linear difference equation is also the linear combination of N linearly independent solutions. Applying reduction of order in case of a multiple root m 1 will yield expressions involving a discrete version of ln , φ ( n ) = ∑ k = 1 n 1 k − ...
It follows from the present theorem and the fundamental theorem of algebra that if the degree of a real polynomial is odd, it must have at least one real root. [2] This can be proved as follows. Since non-real complex roots come in conjugate pairs, there are an even number of them;