Search results
Results From The WOW.Com Content Network
The coefficient of variation is useful because the standard deviation of data must always be understood in the context of the mean of the data. In contrast, the actual value of the CV is independent of the unit in which the measurement has been taken, so it is a dimensionless number .
A i is the number of data type A at sample site i, B i is the number of data type B at sample site i, K is the number of sites sampled and || is the absolute value. This index is probably better known as the index of dissimilarity (D). [44] It is closely related to the Gini index. This index is biased as its expectation under a uniform ...
Common measures of statistical dispersion are the standard deviation, variance, range, interquartile range, absolute deviation, mean absolute difference and the distance standard deviation. Measures that assess spread in comparison to the typical size of data values include the coefficient of variation.
In descriptive statistics, the range of a set of data is size of the narrowest interval which contains all the data. It is calculated as the difference between the largest and smallest values (also known as the sample maximum and minimum). [1] It is expressed in the same units as the data. The range provides an indication of statistical ...
In probability theory and statistics, the index of dispersion, [1] dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard ...
Analogously to how the median generalizes to the geometric median (GM) in multivariate data, MAD can be generalized to the median of distances to GM (MADGM) in n dimensions. This is done by replacing the absolute differences in one dimension by Euclidean distances of the data points to the geometric median in n dimensions. [5]
In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean.The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling.
The Kaiser–Meyer–Olkin (KMO) test is a statistical measure to determine how suited data is for factor analysis. The test measures sampling adequacy for each variable in the model and the complete model. The statistic is a measure of the proportion of variance among variables that might be common variance.