Search results
Results From The WOW.Com Content Network
The following are also concurrent: (1) the circle that is centered at the hyperbola's center and that passes through the hyperbola's vertices; (2) either directrix; and (3) either of the asymptotes. [22] Since both the transverse axis and the conjugate axis are axes of symmetry, the symmetry group of a hyperbola is the Klein four-group.
For = the plane section is a circle, for = a parabola. (The plane must not meet the vertex of the cone.) The linear eccentricity of an ellipse or hyperbola, denoted c (or sometimes f or e), is the distance between its center and either of its two foci.
To generate a hyperbola, the radius of the directrix circle is chosen to be less than the distance between the center of this circle and the focus; thus, the focus is outside the directrix circle. The arms of the hyperbola approach asymptotic lines and the "right-hand" arm of one branch of a hyperbola meets the "left-hand" arm of the other ...
The unit hyperbola is blue, its conjugate is green, and the asymptotes are red. In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation = In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length
In Circle Limit III, for example, one can see that the number of fishes within a distance of n from the center rises exponentially. The fishes have an equal hyperbolic area, so the area of a ball of radius n must rise exponentially in n .
Feuerbach Hyperbola. In geometry, the Feuerbach hyperbola is a rectangular hyperbola passing through important triangle centers such as the Orthocenter, Gergonne point, Nagel point and Schiffler point. The center of the hyperbola is the Feuerbach point, the point of tangency of the incircle and the nine-point circle. [1]
The nine-point center is indexed as X(5), the Feuerbach point, as X(11), the center of the Kiepert hyperbola as X(115), and the center of the Jeřábek hyperbola as X(125). History about the nine-point circle based on J.S. MacKay's article from 1892: History of the Nine Point Circle; Weisstein, Eric W. "Nine-Point Circle". MathWorld.
The word "eccentricity" comes from Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros "out of the center", from ἐκ-ek-, "out of" + κέντρον kentron "center". "Eccentric" first appeared in English in 1551, with the definition "...a circle in which the earth, sun. etc. deviates from its center".