Search results
Results From The WOW.Com Content Network
In particle physics, the electron mass (symbol: m e) is the mass of a stationary electron, also known as the invariant mass of the electron. It is one of the fundamental constants of physics . It has a value of about 9.109 × 10 −31 kilograms or about 5.486 × 10 −4 daltons , which has an energy-equivalent of about 8.187 × 10 −14 joules ...
The invariant mass of an electron is approximately 9.109 × 10 −31 kg, [80] or 5.489 × 10 −4 Da. Due to mass–energy equivalence, this corresponds to a rest energy of 0.511 MeV (8.19 × 10 −14 J). The ratio between the mass of a proton and that of an electron is about 1836.
Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).
He also showed that different results for the longitudinal electromagnetic mass can be obtained in Lorentz's theory, depending on whether the mass is calculated from its energy or its momentum, so a non-electromagnetic potential (corresponding to 1 ⁄ 3 of the electron's electromagnetic energy) was necessary to render these masses equal ...
For electrons or electron holes in a solid, the effective mass is usually stated as a factor multiplying the rest mass of an electron, m e (9.11 × 10 −31 kg). This factor is usually in the range 0.01 to 10, but can be lower or higher—for example, reaching 1,000 in exotic heavy fermion materials , or anywhere from zero to infinity ...
For example, an electron and a positron, each with a mass of 0.511 MeV/c 2, can annihilate to yield 1.022 MeV of energy. A proton has a mass of 0.938 GeV/c 2. In general, the masses of all hadrons are of the order of 1 GeV/c 2, which makes the GeV/c 2 a convenient unit of mass for particle physics: [4]
This page was last edited on 10 May 2022, at 14:44 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply ...
For example, if an electron in a cyclotron is moving in circles with a relativistic velocity, the mass of the cyclotron+electron system is increased by the relativistic mass of the electron, not by the electron's rest mass. But the same is also true of any closed system, such as an electron-and-box, if the electron bounces at high speed inside ...