When.com Web Search

  1. Ads

    related to: 3 sat np complete proof practice

Search results

  1. Results From The WOW.Com Content Network
  2. Not-all-equal 3-satisfiability - Wikipedia

    en.wikipedia.org/wiki/Not-all-equal_3-satisfiability

    The NP-completeness of NAE3SAT can be proven by a reduction from 3-satisfiability (3SAT). [2] First the nonsymmetric 3SAT is reduced to the symmetric NAE4SAT by adding a common dummy literal to every clause, then NAE4SAT is reduced to NAE3SAT by splitting clauses as in the reduction of general -satisfiability to 3SAT.

  3. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    A variant of the 3-satisfiability problem is the one-in-three 3-SAT (also known variously as 1-in-3-SAT and exactly-1 3-SAT). Given a conjunctive normal form with three literals per clause, the problem is to determine whether there exists a truth assignment to the variables so that each clause has exactly one TRUE literal (and thus exactly two ...

  4. Circuit satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Circuit_satisfiability_problem

    Notice that the 3SAT formula is equivalent to the circuit designed above, hence their output is same for same input. Hence, If the 3SAT formula has a satisfying assignment, then the corresponding circuit will output 1, and vice versa. So, this is a valid reduction, and Circuit SAT is NP-hard. This completes the proof that Circuit SAT is NP ...

  5. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    There is often only a small difference between a problem in P and an NP-complete problem. For example, the 3-satisfiability problem, a restriction of the Boolean satisfiability problem, remains NP-complete, whereas the slightly more restricted 2-satisfiability problem is in P (specifically, it is NL-complete), but the slightly more general max ...

  6. MAX-3SAT - Wikipedia

    en.wikipedia.org/wiki/MAX-3SAT

    He constructs a PCP Verifier for 3-SAT that reads only 3 bits from the Proof. For every ε > 0, there is a PCP-verifier M for 3-SAT that reads a random string r of length ⁠ (⁡ ()) ⁠ and computes query positions i r, j r, k r in the proof π and a bit b r. It accepts if and only if 'π(i r) ⊕ π(j r) ⊕ π(k r) = b r.

  7. Planar SAT - Wikipedia

    en.wikipedia.org/wiki/Planar_SAT

    The proof is by reduction to planar maximum cut. [8] Planar circuit SAT: This is a variant of circuit SAT in which the circuit, computing the SAT formula, is a planar directed acyclic graph. Note that this is a different graph than the adjacency graph of the formula. This problem is NP-complete. [9]