Search results
Results From The WOW.Com Content Network
As with any simple polygon, the sum of the internal angles of a concave polygon is π ×(n − 2) radians, equivalently 180×(n − 2) degrees (°), where n is the number of sides. It is always possible to partition a concave polygon into a set of convex polygons. A polynomial-time algorithm for finding a decomposition into as few convex ...
The simplest polygon which can cross itself; the simplest polygon which can be concave; the simplest polygon which can be non-cyclic. Can tile the plane. pentagon: 5 [21] The simplest polygon which can exist as a regular star. A star pentagon is known as a pentagram or pentacle. hexagon: 6 [21] Can tile the plane. heptagon (or septagon) 7
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
One or more concave polygons may produce more than one intersecting polygon. Convex polygons will only have one intersecting polygon. The same algorithm can be used for merging two polygons by starting at the outbound intersections rather than the inbound ones. However this can produce counter-clockwise holes.
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
Star polygon – there are multiple types of stars Pentagram - star polygon with 5 sides; Hexagram – star polygon with 6 sides Star of David (example) Heptagram – star polygon with 7 sides; Octagram – star polygon with 8 sides Star of Lakshmi (example) Enneagram - star polygon with 9 sides; Decagram - star polygon with 10 sides
Polygons with only one concave vertex can always be fan triangulated, as long as the diagonals are drawn from the concave vertex. It can be known if a polygon can be fan triangulated by solving the Art gallery problem, in order to determine whether there is at least one vertex that is visible from every point in the polygon. The triangulation ...
For convex polygons one can cut off each vertex in turn, while for concave polygons this requires more care. A general approach that works for non-simple polygons as well would be to choose a line not parallel to any of the sides of the polygon and draw a line parallel to this one through each of the vertices of the polygon.