Search results
Results From The WOW.Com Content Network
Cronbach's alpha (Cronbach's ), also known as tau-equivalent reliability or coefficient alpha (coefficient ), is a reliability coefficient and a measure of the internal consistency of tests and measures. [1] [2] [3] It was named after the American psychologist Lee Cronbach.
Alpha is also a function of the number of items, so shorter scales will often have lower reliability estimates yet still be preferable in many situations because they are lower burden. An alternative way of thinking about internal consistency is that it is the extent to which all of the items of a test measure the same latent variable. The ...
In statistical models applied to psychometrics, congeneric reliability ("rho C") [1] a single-administration test score reliability (i.e., the reliability of persons over items holding occasion fixed) coefficient, commonly referred to as composite reliability, construct reliability, and coefficient omega.
This halves reliability estimate is then stepped up to the full test length using the Spearman–Brown prediction formula. There are several ways of splitting a test to estimate reliability. For example, a 40-item vocabulary test could be split into two subtests, the first one made up of items 1 through 20 and the second made up of items 21 ...
For the reliability of a two-item test, the formula is more appropriate than Cronbach's alpha (used in this way, the Spearman-Brown formula is also called "standardized Cronbach's alpha", as it is the same as Cronbach's alpha computed using the average item intercorrelation and unit-item variance, rather than the average item covariance and ...
Cronbach's alpha, [25] for example, is designed to assess the degree to which multiple tests produce correlated results. Perfect agreement is the ideal, of course, but Cronbach's alpha is high also when test results vary systematically. Consistency of coders’ judgments does not provide the needed assurances of data reliability.
where is the separation index of the set of estimates of , which is analogous to Cronbach's alpha; that is, in terms of classical test theory, is analogous to a reliability coefficient. Specifically, the separation index is given as follows:
The name of this formula stems from the fact that is the twentieth formula discussed in Kuder and Richardson's seminal paper on test reliability. [1] It is a special case of Cronbach's α, computed for dichotomous scores. [2] [3] It is often claimed that a high KR-20 coefficient (e.g., > 0.90) indicates a homogeneous test. However, like ...