Search results
Results From The WOW.Com Content Network
Complex modulus may refer to: Modulus of complex number , in mathematics, the norm or absolute value, of a complex number: | x + i y | = x 2 + y 2 {\displaystyle |x+iy|={\sqrt {x^{2}+y^{2}}}} Dynamic modulus , in materials engineering, the ratio of stress to strain under vibratory conditions
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
In mathematics, modular forms are particular complex analytic functions on the upper half-plane of interest in complex analysis and number theory. When reduced modulo a prime p, there is an analogous theory to the classical theory of complex modular forms and the p-adic theory of modular forms.
The multiplication of two complex numbers can be expressed more easily in polar coordinates: the magnitude or modulus of the product is the product of the two absolute values, or moduli, and the angle or argument of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a ...
Since λ has modulus 1, multiplying any split-complex number z by λ preserves the modulus of z and represents a hyperbolic rotation (also called a Lorentz boost or a squeeze mapping). Multiplying by λ preserves the geometric structure, taking hyperbolas to themselves and the null cone to itself.
This can be shown directly, or by using the multiplicative property of the modulus of complex numbers. The units of the ring of Gaussian integers (that is the Gaussian integers whose multiplicative inverse is also a Gaussian integer) are precisely the Gaussian integers with norm 1, that is, 1, –1, i and –i. [3]
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.