When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  3. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    For example, suppose we set a ... Function without a limit at an essential discontinuity. ... Since the value at f(0) is a removable discontinuity, ...

  4. Removable singularity - Wikipedia

    en.wikipedia.org/wiki/Removable_singularity

    A graph of a parabola with a removable singularity at x = 2. In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.

  5. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    A removable discontinuity occurs when () = (+), also regardless of whether () is defined, and regardless of its value if it is defined (but which does not match that of the two limits). A type II discontinuity occurs when either f ( c − ) {\displaystyle f(c^{-})} or f ( c + ) {\displaystyle f(c^{+})} does not exist (possibly both).

  6. Singularity function - Wikipedia

    en.wikipedia.org/wiki/Singularity_function

    Singularity functions are a class of discontinuous functions that contain singularities, i.e., they are discontinuous at their singular points.Singularity functions have been heavily studied in the field of mathematics under the alternative names of generalized functions and distribution theory.

  7. Oscillation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Oscillation_(mathematics)

    For example, in the classification of discontinuities: in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits from the two sides);

  8. Removable discontinuity - Wikipedia

    en.wikipedia.org/?title=Removable_discontinuity&...

    This page was last edited on 10 January 2015, at 10:07 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  9. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions. [8] [9]