Ad
related to: magnetic reluctance rotor
Search results
Results From The WOW.Com Content Network
A reluctance motor is a type of electric motor that induces non-permanent magnetic poles on the ferromagnetic rotor. The rotor does not have any windings. It generates torque through magnetic reluctance. Reluctance motor subtypes include synchronous, variable, switched and variable stepping.
Magnetic reluctance in a magnetic circuit is analogous to electrical resistance in an electrical circuit in that resistance is a measure of the opposition to the electric current. The definition of magnetic reluctance is analogous to Ohm's law in this respect. However, magnetic flux passing through a reluctance does not give rise to dissipation ...
The rotor however has no magnets or coils attached. It is a solid salient-pole rotor (having projecting magnetic poles) made of soft magnetic material, typically laminated steel. When power is applied to a stator winding, the rotor's magnetic reluctance creates a force that attempts to align a rotor pole with the nearest stator pole.
These use a specially designed cageless rotor, eliminating rotor losses, with a magnetic field being generated inside the motor, which is guided through low reluctance paths. The field is rotated, which in turn pulls the rotor around to generate torque. The switched reluctance motor initially suffered from a lack of effective speed control.
Permanent magnet motors consist of two main types. Surface permanent magnet motors (SPM) and internal permanent magnet (IPM) motors. The main difference is that SPM motors place the magnets on the outside of the rotor while IPM motors place their magnets inside the motor. Benefits to internal magnets include structural integrity and reducing ...
Magnetic complex reluctance (SI Unit: H −1) is a measurement of a passive magnetic circuit (or element within that circuit) dependent on sinusoidal magnetomotive force (SI Unit: At·Wb −1) and sinusoidal magnetic flux (SI Unit: T·m 2), and this is determined by deriving the ratio of their complex effective amplitudes.[Ref. 1-3] = ˙ ˙ = ˙ ˙ =
As long as the rotor is below synchronous speed, each particle of the rotor experiences a reversing magnetic field at the "slip" frequency that drives it around its hysteresis loop, causing the rotor field to lag and create torque. The rotor has a 2-pole low reluctance bar structure. [18]
A squirrel-cage rotor connected to the output shaft rotates within the stator at slightly less than the rotating field from the stator. Within the squirrel-cage rotor is a freely rotating permanent magnet rotor, which is locked in with rotating field from the stator. The effect of the inner rotor is to reenforce the field from the stator. [1]