Search results
Results From The WOW.Com Content Network
Fresnel's "plane of polarization", traditionally used in optics, is the plane containing the magnetic vectors (B & H) and the wave-normal. Malus's original "plane of polarization" was the plane containing the magnetic vectors and the ray. (In an isotropic medium, θ = 0 and Malus's plane merges with Fresnel's.)
All the polarization information can be reduced to a single vector, called the Jones vector, in the x-y plane. This vector, while arising from a purely classical treatment of polarization, can be interpreted as a quantum state vector. The connection with quantum mechanics is made in the article on photon polarization.
See polarization and plane of polarization for more information. The orientation of a linearly polarized electromagnetic wave is defined by the direction of the electric field vector. [2] For example, if the electric field vector is vertical (alternately up and down as the wave travels) the radiation is said to be vertically polarized.
Polarization can be defined in terms of pure polarization states with only a coherent sinusoidal wave at one optical frequency. The vector in the adjacent diagram might describe the oscillation of the electric field emitted by a single-mode laser (whose oscillation frequency would be typically 10 15 times faster).
Kerr rotation and Kerr ellipticity are changes in the polarization of incident light which comes in contact with a gyromagnetic material. Kerr rotation is a rotation in the plane of polarization of transmitted light, and Kerr ellipticity is the ratio of the major to minor axis of the ellipse traced out by elliptically polarized light on the plane through which it propagates.
A solution of this compound derived from living things (to be specific, wine lees) rotates the plane of polarization of light passing through it, but tartaric acid derived by chemical synthesis has no such effect, even though its reactions are identical and its elemental composition is the same. Pasteur noticed that crystals of this compound ...
Circular polarization and linear polarization can be considered to be special cases of elliptical polarization. This terminology was introduced by Augustin-Jean Fresnel in 1822, [1] before the electromagnetic nature of light waves was known. Elliptical polarization diagram
Optically active samples, such as solutions of chiral molecules, often exhibit circular birefringence. Circular birefringence causes rotation of the polarization of plane polarized light as it passes through the sample. In ordinary light, the vibrations occur in all planes perpendicular to the direction of propagation.