Search results
Results From The WOW.Com Content Network
Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...
In this example we try to fit the function = + using the Levenberg–Marquardt algorithm implemented in GNU Octave as the leasqr function. The graphs show progressively better fitting for the parameters a = 100 {\displaystyle a=100} , b = 102 {\displaystyle b=102} used in the initial curve.
One common difficulty in fitting nonlinear models is finding adequate starting values. A major advantage of rational function models is the ability to compute starting values using a linear least squares fit. To do this, p points are chosen from the data set, with p denoting the number of parameters in the rational model. For example, given the ...
To fit a symmetrical distribution to data obeying a negatively skewed distribution (i.e. skewed to the left, with mean < mode, and with a right hand tail this is shorter than the left hand tail) one could use the squared values of the data to accomplish the fit. More generally one can raise the data to a power p in order to fit symmetrical ...
The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...
A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.
The best-fit curve is often assumed to be that which minimizes the sum of squared residuals. This is the ordinary least squares (OLS) approach. However, in cases where the dependent variable does not have constant variance, or there are some outliers, a sum of weighted squared residuals may be minimized; see weighted least squares .
FEniCS Project is a collection of project for automated solutions to PDEs. Hermes is a C++ library of advanced adaptive finite element algorithms to solve PDEs and multiphysics coupled problems. Fityk is a curve fitting and data-analysis program. Primarily used for peak fitting and analyzing peak data.