Search results
Results From The WOW.Com Content Network
Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel.
However, a set of four or more distinct points will, in general, not lie in a single plane. An example of coplanar points. Two lines in three-dimensional space are coplanar if there is a plane that includes them both. This occurs if the lines are parallel, or if they intersect each other. Two lines that are not coplanar are called skew lines.
Two distinct planes are either parallel or they intersect in a line. A line is either parallel to a plane, intersects it at a single point, or is contained in the plane. Two distinct lines perpendicular to the same plane must be parallel to each other. Two distinct planes perpendicular to the same line must be parallel to each other.
Two-dimensional spaces can also be curved, for example the sphere and hyperbolic plane, sufficiently small portions of which appear like the flat plane, but on which straight lines which are locally parallel do not stay equidistant from each-other but eventually converge or diverge, respectively.
In three-dimensional geometry, a parallel projection (or axonometric projection) is a projection of an object in three-dimensional space onto a fixed plane, known as the projection plane or image plane, where the rays, known as lines of sight or projection lines, are parallel to each other.
The archetypical example is the real projective plane, also known as the extended Euclidean plane. [4] This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by PG(2, R), RP 2, or P 2 (R), among other notations.
Parallel lines such as metal rails on a railway line meet one another at such points. Lines at infinity also exist; the horizon line is an example of such a line. For an observer standing on a plane, all planes parallel to the plane they stand on meet one another at the horizon line.
A plane is said to have the "minor affine Desargues property" when two triangles in parallel perspective, having two parallel sides, must also have the third sides parallel. If this property holds in the affine plane defined by a ternary ring, then there is an equivalence relation between "vectors" defined by pairs of points from the plane. [14]