Search results
Results From The WOW.Com Content Network
In geometry, a star-shaped polygon is a polygonal region in the plane that is a star domain, that is, a polygon that contains a point from which the entire polygon boundary is visible. Formally, a polygon P is star-shaped if there exists a point z such that for each point p of P the segment z p ¯ {\displaystyle {\overline {zp}}} lies ...
A regular star polygon is a self-intersecting, equilateral, and equiangular polygon. A regular star polygon is denoted by its Schläfli symbol { p / q }, where p (the number of vertices) and q (the density ) are relatively prime (they share no factors) and where q ≥ 2.
A star domain (equivalently, a star-convex or star-shaped set) is not necessarily convex in the ordinary sense. An annulus is not a star domain.. In geometry, a set in the Euclidean space is called a star domain (or star-convex set, star-shaped set [1] or radially convex set) if there exists an such that for all , the line segment from to lies in .
All convex polygons are star-shaped. Self-intersecting: the boundary of the polygon crosses itself. The term complex is sometimes used in contrast to simple, but this usage risks confusion with the idea of a complex polygon as one which exists in the complex Hilbert plane consisting of two complex dimensions. Star polygon: a polygon which self ...
Regular convex and star polygons with 3 to 12 vertices labelled with their Schläfli symbols. Stellating a regular polygon symmetrically creates a regular star polygon or polygonal compound. These polygons are characterised by the number of times m that the polygonal boundary winds around the centre of the figure. Like all regular polygons ...
In geometry, a decagram is a 10-point star polygon. There is one regular decagram, containing the vertices of a regular decagon, but connected by every third point. Its Schläfli symbol is {10/3}. [1] The name decagram combines a numeral prefix, deca-, with the Greek suffix -gram. The -gram suffix derives from γραμμῆς (grammēs) meaning ...
This is the smallest star polygon that can be drawn in two forms, as irreducible fractions. The two heptagrams are sometimes called the heptagram (for {7/2}) and the great heptagram (for {7/3}). The previous one, the regular hexagram {6/2}, is a compound of two triangles. The smallest star polygon is the {5/2} pentagram.
The star unfolding should be distinguished from another way of cutting a convex polyhedron into a simple polygon net, the source unfolding.The source unfolding cuts the polyhedron at points that have multiple equally short geodesics to the given base point , and forms a polygon with at its center, preserving geodesics from .