When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Base change theorems - Wikipedia

    en.wikipedia.org/wiki/Base_change_theorems

    The proper base change theorem is needed to show that this is well-defined, i.e., independent (up to isomorphism) of the choice of the compactification. Moreover, again in analogy to the case of sheaves on a topological space, a base change formula for g ∗ {\displaystyle g_{*}} vs. R f ! {\displaystyle Rf_{!}} does hold for non-proper maps f .

  3. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Barwise compactness theorem (mathematical logic) Base change theorems (algebraic geometry) Basel problem (mathematical analysis) Bass's theorem (group theory) Basu's theorem ; Bauer–Fike theorem (spectral theory) Bayes' theorem (probability) Beatty's theorem (Diophantine approximation) Beauville–Laszlo theorem (vector bundles)

  4. Change of basis - Wikipedia

    en.wikipedia.org/wiki/Change_of_basis

    This change can be computed by substituting the "old" coordinates for their expressions in terms of the "new" coordinates. More precisely, if f(x) is the expression of the function in terms of the old coordinates, and if x = Ay is the change-of-base formula, then f(Ay) is the expression of the same function in terms of the new coordinates.

  5. Change of base - Wikipedia

    en.wikipedia.org/wiki/Change_of_base

    In mathematics, change of base can mean any of several things: Changing numeral bases, such as converting from base 2 to base 10 . This is known as base conversion. The logarithmic change-of-base formula, one of the logarithmic identities used frequently in algebra and calculus.

  6. Base change - Wikipedia

    en.wikipedia.org/wiki/Base_change

    In mathematics, base change may mean: Base change map in algebraic geometry; Fiber product of schemes in algebraic geometry; Change of base (disambiguation) ...

  7. Proper morphism - Wikipedia

    en.wikipedia.org/wiki/Proper_morphism

    More strongly, properness is local on the base in the fpqc topology. For example, if X is a scheme over a field k and E is a field extension of k, then X is proper over k if and only if the base change X E is proper over E. [3] Closed immersions are proper. More generally, finite morphisms are proper. This is a consequence of the going up theorem.

  8. Alexandra Bellow - Wikipedia

    en.wikipedia.org/wiki/Alexandra_Bellow

    Some of her early work involved properties and consequences of lifting.Lifting theory, which had started with the pioneering papers of John von Neumann and later Dorothy Maharam, came into its own in the 1960s and 1970s with the work of the Ionescu Tulceas and provided the definitive treatment for the representation theory of linear operators arising in probability, the process of ...

  9. Semistable reduction theorem - Wikipedia

    en.wikipedia.org/wiki/Semistable_reduction_theorem

    Here is the algebro-geometric analogue of "small" disc around the , and the condition of the theorem states essentially that can be thought of as a smooth family of Abelian varieties away from ; the conclusion then shows that after base change this "family" extends to the so that also the fibres over the are close to being Abelian varieties.