When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Curved mirror - Wikipedia

    en.wikipedia.org/wiki/Curved_mirror

    Spherical mirrors, however, suffer from spherical aberration—parallel rays reflected from such mirrors do not focus to a single point. For parallel rays, such as those coming from a very distant object, a parabolic reflector can do a better job. Such a mirror can focus incoming parallel rays to a much smaller spot than a spherical mirror can.

  3. Radius of curvature (optics) - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature_(optics)

    A spherical lens or mirror surface has a center of curvature located either along or decentered from the system local optical axis. The vertex of the lens surface is located on the local optical axis. The distance from the vertex to the center of curvature is the radius of curvature of the surface. [1] [unreliable source?] [2]

  4. Schmidt–Cassegrain telescope - Wikipedia

    en.wikipedia.org/wiki/Schmidt–Cassegrain_telescope

    While there are many variations of the Schmidt–Cassegrain telescope design (both mirrors spherical, both mirrors aspherical, or one of each), they can be divided into two principal types: compact and non-compact. In the compact form, the corrector plate is located at or near the focus of the primary mirror.

  5. Geometrical optics - Wikipedia

    en.wikipedia.org/wiki/Geometrical_optics

    For mirrors with parabolic surfaces, parallel rays incident on the mirror produce reflected rays that converge at a common focus. Other curved surfaces may also focus light, but with aberrations due to the diverging shape causing the focus to be smeared out in space. In particular, spherical mirrors exhibit spherical aberration. Curved mirrors ...

  6. Reflecting telescope - Wikipedia

    en.wikipedia.org/wiki/Reflecting_telescope

    A convex secondary mirror is placed just to the side of the light entering the telescope, and positioned afocally so as to send parallel light on to the tertiary. The concave tertiary mirror is positioned exactly twice as far to the side of the entering beam as was the convex secondary, and its own radius of curvature distant from the secondary.

  7. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    For mirrors with parabolic surfaces, parallel rays incident on the mirror produce reflected rays that converge at a common focus. Other curved surfaces may also focus light, but with aberrations due to the diverging shape causing the focus to be smeared out in space. In particular, spherical mirrors exhibit spherical aberration. Curved mirrors ...

  8. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Image distance in a spherical mirror + = () Subscripts 1 and 2 refer to initial and final optical media respectively. These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:

  9. Three-mirror anastigmat - Wikipedia

    en.wikipedia.org/wiki/Three-mirror_anastigmat

    A three-mirror anastigmat is an anastigmat telescope built with three curved mirrors, enabling it to minimize all three main optical aberrations – spherical aberration, coma, and astigmatism. This is primarily used to enable wide fields of view, much larger than possible with telescopes with just one or two curved surfaces.