When.com Web Search

  1. Ads

    related to: how to multiply unlike fractions with mixed roots step by step example

Search results

  1. Results From The WOW.Com Content Network
  2. Clearing denominators - Wikipedia

    en.wikipedia.org/wiki/Clearing_denominators

    The first step is to determine a common denominator D of these fractions – preferably the least common denominator, which is the least common multiple of the Q i. This means that each Q i is a factor of D, so D = R i Q i for some expression R i that is not a fraction. Then

  3. Cross-multiplication - Wikipedia

    en.wikipedia.org/wiki/Cross-multiplication

    Each step in these procedures is based on a single, fundamental property of equations. Cross-multiplication is a shortcut, an easily understandable procedure that can be taught to students. Cross-multiplication is a shortcut, an easily understandable procedure that can be taught to students.

  4. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    There are two steps to extracting the cube root from the cube of a two-digit number. For example, extracting the cube root of 29791. Determine the one's place (units) of the two-digit number. Since the cube ends in 1, as seen above, it must be 1. If the perfect cube ends in 0, the cube root of it must end in 0.

  5. Rationalisation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rationalisation_(mathematics)

    In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...

  6. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    This counterintuitive result occurs because in the case where =, multiplying both sides by multiplies both sides by zero, and so necessarily produces a true equation just as in the first example. In general, whenever we multiply both sides of an equation by an expression involving variables, we introduce extraneous solutions wherever that ...

  7. Grid method multiplication - Wikipedia

    en.wikipedia.org/wiki/Grid_method_multiplication

    The grid method can be introduced by thinking about how to add up the number of points in a regular array, for example the number of squares of chocolate in a chocolate bar. As the size of the calculation becomes larger, it becomes easier to start counting in tens; and to represent the calculation as a box which can be sub-divided, rather than ...

  8. Toom–Cook multiplication - Wikipedia

    en.wikipedia.org/wiki/Toom–Cook_multiplication

    Unlike multiplying the polynomials p(·) and q(·), multiplying the evaluated values p(a) and q(a) just involves multiplying integers — a smaller instance of the original problem. We recursively invoke our multiplication procedure to multiply each pair of evaluated points.

  9. Lattice multiplication - Wikipedia

    en.wikipedia.org/wiki/Lattice_multiplication

    For example, to multiply 5.8 by 2.13, the process is the same as to multiply 58 by 213 as described in the preceding section. To find the position of the decimal point in the final answer, one can draw a vertical line from the decimal point in 5.8, and a horizontal line from the decimal point in 2.13.