When.com Web Search

  1. Ads

    related to: magnetic constant μ 0 equation example problems class

Search results

  1. Results From The WOW.Com Content Network
  2. Vacuum permeability - Wikipedia

    en.wikipedia.org/wiki/Vacuum_permeability

    In another system, the "rationalized metre–kilogram–second (rmks) system" (or alternatively the "metre–kilogram–second–ampere (mksa) system"), k m is written as μ 0 /2π, where μ 0 is a measurement-system constant called the "magnetic constant". [b] The value of μ 0 was chosen such that the rmks unit of current is equal in size to ...

  3. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In free space, where ε = ε 0 and μ = μ 0 are constant everywhere, Maxwell's equations simplify considerably once the language of differential geometry and differential forms is used. The electric and magnetic fields are now jointly described by a 2-form F in a 4-dimensional spacetime manifold.

  4. Permeability (electromagnetism) - Wikipedia

    en.wikipedia.org/wiki/Permeability...

    The permeability of vacuum (also known as permeability of free space) is a physical constant, denoted μ 0. The SI units of μ are volt-seconds per ampere-meter, equivalently henry per meter. Typically μ would be a scalar, but for an anisotropic material, μ could be a second rank tensor. However, inside strong magnetic materials (such as iron ...

  5. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).

  6. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such ...

  7. Magnetic susceptibility - Wikipedia

    en.wikipedia.org/wiki/Magnetic_susceptibility

    where μ 0 is the vacuum permeability (see table of physical constants), and (1 + χ v) is the relative permeability of the material. Thus the volume magnetic susceptibility χ v and the magnetic permeability μ are related by the following formula: = (+).

  8. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The electromagnetic stress–energy tensor can be interpreted as the flux density of the momentum four-vector, and is a contravariant symmetric tensor that is the contribution of the electromagnetic fields to the overall stress–energy tensor: = (/ + / / / / / / /), where is the electric permittivity of vacuum, μ 0 is the magnetic ...

  9. Curie–Weiss law - Wikipedia

    en.wikipedia.org/wiki/Curie–Weiss_law

    Here μ 0 is the permeability of free space; M the magnetization (magnetic moment per unit volume), B = μ 0 H is the magnetic field, and C the material-specific Curie constant: = (+), where k B is the Boltzmann constant, N the number of magnetic atoms (or molecules) per unit volume, g the Landé g-factor, μ B the Bohr magneton, J the angular ...