Search results
Results From The WOW.Com Content Network
To calculate the radar cross-section of such a stealth body, one would typically do one-dimensional reflection calculations to calculate the surface impedance, then two dimensional numerical calculations to calculate the diffraction coefficients of edges and small three dimensional calculations to calculate the diffraction coefficients of ...
For basic considerations of the strength of a signal returned by a given target, the radar equation models the target as a single point in space with a given radar cross-section (RCS). The RCS is difficult to estimate except for the most basic cases, like a perpendicular surface or a sphere.
Optical cross section of a flat mirror with a given reflectivity at a particular wavelength () can be expressed by the formula = Where is the cross sectional diameter of the beam. Note that the direction of the light has to be perpendicular to the mirror surface for this formula to be valid, else the return from the mirror would no longer go ...
Different radar artifacts cluttering the radar display. Clutter [1] [2] is the unwanted return (echoes) in electronic systems, particularly in reference to radars.Such echoes are typically returned from ground, sea, rain, animals/insects, chaff and atmospheric turbulences, and can cause serious performance issues with radar systems.
where Q is the efficiency factor of scattering, which is defined as the ratio of the scattering cross-section and geometrical cross-section πa 2. The term p = 4πa( n − 1)/λ has as its physical meaning the phase delay of the wave passing through the centre of the sphere, where a is the sphere radius, n is the ratio of refractive indices ...
The radar pulse train is a form of square wave, the pure form of which consists of the fundamental plus all of the odd harmonics. The exact composition of the pulse train will depend on the pulse width and PRF, but mathematical analysis can be used to calculate all of the frequencies in the spectrum. When the pulse train is used to modulate a ...
The radar frequency is also chosen in order to optimize the radar cross-section (RCS) of the envisioned target, which is frequency-dependent. Examples of propagation windows are the 3 GHz (S), 10 GHz (X), 24 GHz (K), 35 GHz (Ka), 77 GHz (W), 94 GHz (W) propagation windows.
The cross-section is the minimum apparent surface area observed in the direction of the radar that must be detectable.. Radar cross section changes with aspect angle. Cross section for anything except a perfect sphere depends upon the aspect angle, which how far the reflector is rotated with respect to the radar pulse.