Search results
Results From The WOW.Com Content Network
The neutral current can be determined by adding the three phase currents together as complex numbers and then converting from rectangular to polar co-ordinates. If the three-phase root mean square (RMS) currents are I L 1 {\displaystyle I_{L1}} , I L 2 {\displaystyle I_{L2}} , and I L 3 {\displaystyle I_{L3}} , the neutral RMS current is:
A three-phase induction motor has a simple design, inherently high starting torque and high efficiency. Such motors are applied in industry for many applications. A three-phase motor is more compact and less costly than a single-phase motor of the same voltage class and rating, and single-phase AC motors above 10 hp (7.5 kW) are uncommon. Three ...
A set of three line (or line-to-line) voltages in a balanced three-phase (three-wire or four-wire) power system cannot contain harmonics whose frequency is an integer multiple of the frequency of the third harmonics (i.e. harmonics of order =), which includes triplen harmonics (i.e. harmonics of order = ()). [3]
Original - Current flows from a three-phase generator on the left, represented as three wye-connected single-phase sources, via a transmission line into a symmetric wye-connected load on the right. The phases have been arbitrarily coloured red, green, and blue. The angular separation between the phases is 120°, or 2π/3 radians.
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.
Symmetrical components are most commonly used for analysis of three-phase electrical power systems. The voltage or current of a three-phase system at some point can be indicated by three phasors, called the three components of the voltage or the current. This article discusses voltage; however, the same considerations also apply to current.
Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...
The transform applied to three-phase currents, as used by Edith Clarke, is [2] = = [] [() ()]where () is a generic three-phase current sequence and () is the corresponding current sequence given by the transformation .