When.com Web Search

  1. Ad

    related to: what is polynomial class 10 extra questions circles and angles

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8] For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the ...

  3. Central angle - Wikipedia

    en.wikipedia.org/wiki/Central_angle

    Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]

  4. Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry

    Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

  5. Jacobian conjecture - Wikipedia

    en.wikipedia.org/wiki/Jacobian_conjecture

    The polynomial x − x p has derivative 1 − p x p−1 which is 1 (because px is 0) but it has no inverse function. However, Kossivi Adjamagbo [ ht ] suggested extending the Jacobian conjecture to characteristic p > 0 by adding the hypothesis that p does not divide the degree of the field extension k ( X ) / k ( F ) .

  6. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    The measure of ∠AOB, where O is the center of the circle, is 2α. The inscribed angle theorem states that an angle θ inscribed in a circle is half of the central angle 2θ that intercepts the same arc on the circle. Therefore, the angle does not change as its vertex is moved to different positions on the circle.

  7. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  8. Generalized trigonometry - Wikipedia

    en.wikipedia.org/wiki/Generalized_trigonometry

    Ordinary trigonometry studies triangles in the Euclidean plane ⁠ ⁠.There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions [broken anchor], definitions via differential equations [broken anchor], and definitions using functional equations.

  9. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    It follows that the roots of a polynomial with real coefficients are mirror-symmetric with respect to the real axis. This can be extended to algebraic conjugation: the roots of a polynomial with rational coefficients are conjugate (that is, invariant) under the action of the Galois group of the polynomial. However, this symmetry can rarely be ...