When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  3. Settling time - Wikipedia

    en.wikipedia.org/wiki/Settling_time

    Settling time depends on the system response and natural frequency. The settling time for a second order , underdamped system responding to a step response can be approximated if the damping ratio ζ ≪ 1 {\displaystyle \zeta \ll 1} by T s = − ln ⁡ ( tolerance fraction ) damping ratio × natural freq {\displaystyle T_{s}=-{\frac {\ln ...

  4. Control theory - Wikipedia

    en.wikipedia.org/wiki/Control_theory

    In contrast to the frequency domain analysis of the classical control theory, modern control theory utilizes the time-domain state space representation, [citation needed] a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations. To abstract from the number of inputs ...

  5. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    In control engineering and system identification, a state-space representation is a mathematical model of a physical system specified as a set of input, output, and variables related by first-order differential equations or difference equations.

  6. Proportional–integral–derivative controller - Wikipedia

    en.wikipedia.org/wiki/Proportional–integral...

    In this method, the process gain (k p) is equal to the change in output divided by the change in input. The dead time θ is the amount of time between when the step change occurred and when the output first changed. The time constant (τ p) is the amount of time it takes for the output to reach 63.2% of the new steady-state value after the step ...

  7. Hamiltonian (control theory) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(control_theory)

    (Note that the discrete time Hamiltonian at time involves the costate variable at time + [9] This small detail is essential so that when we differentiate with respect to we get a term involving + on the right hand side of the costate equations. Using a wrong convention here can lead to incorrect results, i.e. a costate equation which is not a ...

  8. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    In engineering, a transfer function (also known as system function [1] or network function) of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. [2] [3] [4] It is widely used in electronic engineering tools like circuit simulators and control systems.

  9. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    A typical step response for a second order system, illustrating overshoot, followed by ringing, all subsiding within a settling time. The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory, step ...