Search results
Results From The WOW.Com Content Network
A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.
Print/export Download as PDF; Printable version; In other projects Wikidata item; ... not pure elements in their standard state or allotropes.
At standard pressure, carbon, the lightest carbon group element, sublimes at 3825 °C. Silicon's boiling point is 3265 °C, germanium's is 2833 °C, tin's is 2602 °C, and lead's is 1749 °C. Flerovium is predicted to boil at −60 °C. [11] [12] The melting points of the carbon group elements have roughly the same trend as their boiling points ...
Hardnesses of the elements (data page) ... Print/export Download as PDF; Printable version; ... carbon (graphite) 0.5: 6: C: carbon (diamond) 10.0: 11: Na:
Carbon (6 C) has 14 known isotopes, from 8 C to 20 C as well as 22 C, of which 12 C and 13 C are stable. The longest-lived radioisotope is 14 C, with a half-life of 5.70(3) × 10 3 years. This is also the only carbon radioisotope found in nature, as trace quantities are formed cosmogenically by the reaction 14 N + n → 14 C + 1 H. The most ...
For stable elements, the formal standard atomic weight (s.a.w.) is added, as published by CIAAW. When the s.a.w. is in interval-notation, its conventional value is added too. Data is retrieved from central s.a.w. values lists, formatting is by {{Infobox element/standard atomic weight format}} (same as {{infobox element}}). Example:
Abundance (atom fraction) of the chemical elements in Earth's upper continental crust as a function of atomic number; [5] siderophiles shown in yellow Graphs of abundance against atomic number can reveal patterns relating abundance to stellar nucleosynthesis and geochemistry.
Carbon is the sixth element, with a ground-state electron configuration of 1s 2 2s 2 2p 2, of which the four outer electrons are valence electrons. Its first four ionisation energies, 1086.5, 2352.6, 4620.5 and 6222.7 kJ/mol, are much higher than those of the heavier group-14 elements.