When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ewald's sphere - Wikipedia

    en.wikipedia.org/wiki/Ewald's_sphere

    the diffraction angle for a given reflection, the reciprocal lattice of the crystal. It was conceived by Paul Peter Ewald, a German physicist and crystallographer. [1] Ewald himself spoke of the sphere of reflection. [2] It is often simplified to the two-dimensional "Ewald's circle" model or may be referred to as the Ewald sphere.

  3. Reflectarray antenna - Wikipedia

    en.wikipedia.org/wiki/Reflectarray_antenna

    The reflection phase at each unit cell determines the overall beam shape and direction. Ideally, the total phase shift range would be 360°. [ 1 ] The aperture efficiency , and hence gain , of the reflectarray will be reduced if the angle of incidence to the unit cells is not considered, or if spillover occurs or illumination of the ...

  4. Angle of incidence (optics) - Wikipedia

    en.wikipedia.org/wiki/Angle_of_incidence_(optics)

    Focusing X-rays with glancing reflection. When dealing with a beam that is nearly parallel to a surface, it is sometimes more useful to refer to the angle between the beam and the surface tangent, rather than that between the beam and the surface normal. The 90-degree complement to the angle of incidence is called the grazing angle or glancing ...

  5. Reflection (physics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(physics)

    Reflection of light is either specular (mirror-like) or diffuse (retaining the energy, but losing the image) depending on the nature of the interface.In specular reflection the phase of the reflected waves depends on the choice of the origin of coordinates, but the relative phase between s and p (TE and TM) polarizations is fixed by the properties of the media and of the interface between them.

  6. Diffuse reflection - Wikipedia

    en.wikipedia.org/wiki/Diffuse_reflection

    Many common materials exhibit a mixture of specular and diffuse reflection. The visibility of objects, excluding light-emitting ones, is primarily caused by diffuse reflection of light: it is diffusely-scattered light that forms the image of the object in an observer's eye over a wide range of angles of the observer with respect to the object.

  7. Lambert's cosine law - Wikipedia

    en.wikipedia.org/wiki/Lambert's_cosine_law

    In optics, Lambert's cosine law says that the observed radiant intensity or luminous intensity from an ideal diffusely reflecting surface or ideal diffuse radiator is directly proportional to the cosine of the angle θ between the observer's line of sight and the surface normal; I = I 0 cos θ.

  8. Specular reflection - Wikipedia

    en.wikipedia.org/wiki/Specular_reflection

    Specular reflection, or regular reflection, is the mirror-like reflection of waves, such as light, from a surface. [ 1 ] The law of reflection states that a reflected ray of light emerges from the reflecting surface at the same angle to the surface normal as the incident ray, but on the opposing side of the surface normal in the plane formed by ...

  9. Reflectance - Wikipedia

    en.wikipedia.org/wiki/Reflectance

    When reflection occurs from thin layers of material, internal reflection effects can cause the reflectance to vary with surface thickness. Reflectivity is the limit value of reflectance as the sample becomes thick; it is the intrinsic reflectance of the surface, hence irrespective of other parameters such as the reflectance of the rear surface.