Search results
Results From The WOW.Com Content Network
The Sun is composed primarily of the chemical elements hydrogen and helium; they account for 74.9% and 23.8%, respectively, of the mass of the Sun in the photosphere.All heavier elements, colloquially called metals in stellar astronomy, account for less than 2% of the mass, with oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%) being the most abundant.
Although the Sun is a star, its photosphere has a low enough temperature of 6,000 K (5,730 °C; 10,340 °F), and therefore molecules can form. Water has been found on the Sun, and there is evidence of H 2 in white dwarf stellar atmospheres. [2] [4] Cooler stars include absorption band spectra that are characteristic of molecules.
Later in its life, a low-mass star will slowly eject its atmosphere via stellar wind, forming a planetary nebula, while a higher–mass star will eject mass via a sudden catastrophic event called a supernova. The term supernova nucleosynthesis is used to describe the creation of elements during the explosion of a massive star or white dwarf.
When our sun dies about 5 billion years from now it might look something like this glowing celestial display which was captured from 4,600 light-years away. Hubble image of a star exploding may ...
Because technetium is radioactive, with a half-life much less than the age of the star, its abundance must reflect its recent creation within that star. Equally convincing evidence of the stellar origin of heavy elements is the large overabundances of specific stable elements found in stellar atmospheres of asymptotic giant branch stars.
Researchers have discovered a white dwarf (a dead star), with an oxygen atmosphere surrounding it -- the first of its kind. Astronomers managed to pick up the star from spectral lines: colored ...
Representative lifetimes of stars as a function of their masses The change in size with time of a Sun-like star Artist's depiction of the life cycle of a Sun-like star, starting as a main-sequence star at lower left then expanding through the subgiant and giant phases, until its outer envelope is expelled to form a planetary nebula at upper right Chart of stellar evolution
When a star runs out of hydrogen to fuse in its core, it begins to contract and heat up. If the central temperature rises to 10 8 K, [ 6 ] six times hotter than the Sun's core, alpha particles can fuse fast enough to get past the beryllium-8 barrier and produce significant amounts of stable carbon-12.