When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. The function () = has ″ =, so f is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points. It is not strongly convex.

  3. Modulus and characteristic of convexity - Wikipedia

    en.wikipedia.org/wiki/Modulus_and_characteristic...

    In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.

  4. Convex set - Wikipedia

    en.wikipedia.org/wiki/Convex_set

    The convex-hull operation is needed for the set of convex sets to form a lattice, in which the "join" operation is the convex hull of the union of two convex sets ⁡ ⁡ = ⁡ = ⁡ (⁡ ⁡ ()). The intersection of any collection of convex sets is itself convex, so the convex subsets of a (real or complex) vector space form a complete lattice .

  5. Uniformly convex space - Wikipedia

    en.wikipedia.org/wiki/Uniformly_convex_space

    The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...

  6. Convex analysis - Wikipedia

    en.wikipedia.org/wiki/Convex_analysis

    Convex analysis includes not only the study of convex subsets of Euclidean spaces but also the study of convex functions on abstract spaces. Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization, a subdomain of optimization theory.

  7. Logarithmically convex function - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_convex...

    Strictly logarithmically convex if is strictly convex. Here we interpret log ⁡ 0 {\displaystyle \log 0} as − ∞ {\displaystyle -\infty } . Explicitly, f is logarithmically convex if and only if, for all x 1 , x 2 ∈ X and all t ∈ [0, 1] , the two following equivalent conditions hold:

  8. Strictly convex space - Wikipedia

    en.wikipedia.org/wiki/Strictly_convex_space

    In mathematics, a strictly convex space is a normed vector space (X, || ||) for which the closed unit ball is a strictly convex set. Put another way, a strictly convex space is one for which, given any two distinct points x and y on the unit sphere ∂B (i.e. the boundary of the unit ball B of X), the segment joining x and y meets ∂B only at ...

  9. Logarithmically concave function - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    In convex analysis, a non-negative function f : R n → R + is logarithmically concave (or log-concave for short) if its domain is a convex set, and if it satisfies the inequality (+ ()) () for all x,y ∈ dom f and 0 < θ < 1.