Ad
related to: enzyme and microbial technology
Search results
Results From The WOW.Com Content Network
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
Industrial enzymes are enzymes that are commercially used in a variety of industries such as pharmaceuticals, chemical production, biofuels, food and beverage, and consumer products. Due to advancements in recent years, biocatalysis through isolated enzymes is considered more economical than use of whole cells.
Of primary interest among the intracellular components are microbial enzymes: catalase, amylase, protease, pectinase, cellulase, hemicellulase, lipase, lactase, streptokinase and many others. [14] Recombinant proteins , such as insulin , hepatitis B vaccine , interferon , granulocyte colony-stimulating factor , streptokinase and others are also ...
The term is derived from a combination of the words “enzyme” and “antibiotics.” Enzymes have been extensively utilized for their antibacterial and antimicrobial properties. [ 2 ] Proteolytic enzymes called endolysins have demonstrated particular effectiveness in combating a range of bacteria and are the basis for enzybiotic research. [ 3 ]
An enzymatic biofuel cell is a specific type of fuel cell that uses enzymes as a catalyst to oxidize its fuel, rather than precious metals. Enzymatic biofuel cells, while currently confined to research facilities, are widely prized for the promise they hold in terms of their relatively inexpensive components and fuels, as well as a potential power source for bionic implants.
Industrial fermentation can be used for enzyme production, where proteins with catalytic activity are produced and secreted by microorganisms. The development of fermentation processes, microbial strain engineering and recombinant gene technologies has enabled the commercialization of a wide range of enzymes.
In enzymology, a xylose isomerase (EC 5.3.1.5) is an enzyme that catalyzes the interconversion of D-xylose and D-xylulose. This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ketoses. The isomerase has now been observed in nearly a hundred species of bacteria. [2]
Industrial microbiology is a branch of biotechnology that applies microbial sciences to create industrial products in mass quantities, often using microbial cell factories. There are multiple ways to manipulate a microorganism in order to increase maximum product yields. Introduction of mutations into an organism may be accomplished by ...