When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Exponential response formula - Wikipedia

    en.wikipedia.org/wiki/Exponential_response_formula

    The general solution of a non-homogeneous linear ordinary differential equation is a superposition of the general solution of the associated homogeneous ODE and a particular solution to the non-homogeneous ODE. [1] Alternative methods for solving ordinary differential equations of higher order are method of undetermined coefficients and method ...

  3. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly.

  4. Characteristic equation (calculus) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation...

    [3] [4] The characteristic equation can only be formed when the differential or difference equation is linear and homogeneous, and has constant coefficients. [1] Such a differential equation, with y as the dependent variable, superscript (n) denoting n th-derivative, and a n, a n − 1, ..., a 1, a 0 as constants,

  5. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    The function σ P is homogeneous of degree k in the ξ variable. The zeros of σ P , away from the zero section of T ∗ X , are the characteristics of P . A hypersurface of X defined by the equation F ( x ) = c is called a characteristic hypersurface at x if

  6. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    An ODE problem can be expanded with the auxiliary variables which make the power series method trivial for an equivalent, larger system. Expanding the ODE problem with auxiliary variables produces the same coefficients (since the power series for a function is unique) at the cost of also calculating the coefficients of auxiliary equations.

  7. Reduction of order - Wikipedia

    en.wikipedia.org/wiki/Reduction_of_order

    Consider the general, homogeneous, second-order linear constant coefficient ordinary differential equation. (ODE) ″ + ′ + =, where ,, are real non-zero coefficients. . Two linearly independent solutions for this ODE can be straightforwardly found using characteristic equations except for the case when the discriminant, , vanish

  8. Matrix differential equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_differential_equation

    To solve a matrix ODE according to the three steps detailed above, using simple matrices in the process, let us find, say, a function x and a function y both in terms of the single independent variable t, in the following homogeneous linear differential equation of the first order,

  9. Frobenius method - Wikipedia

    en.wikipedia.org/wiki/Frobenius_method

    Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.