Search results
Results From The WOW.Com Content Network
Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, [4] and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering , navigation , physics , and geometry .
Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same.
They are named for the parity of the powers of the power functions which satisfy each condition: the function () = is even if n is an even integer, and it is odd if n is an odd integer. Even functions are those real functions whose graph is self-symmetric with respect to the y -axis, and odd functions are those whose graph is self-symmetric ...
The numbers A 2n with even indices are called secant numbers or zig numbers: since the secant function is even and tangent is odd, it follows from André's theorem above that they are the numerators in the Maclaurin series of sec x. The first few values are 1, 1, 5, 61, 1385, 50521, ...
The word secant comes from the Latin word secare, meaning to cut. [2] In the case of a circle, a secant intersects the circle at exactly two points. A chord is the line segment determined by the two points, that is, the interval on the secant whose ends are the two points. [3]
Secant is a term in mathematics derived from the Latin secare ("to cut"). It may refer to: a secant line, in geometry; the secant variety, in algebraic geometry; secant (trigonometry) (Latin: secans), the multiplicative inverse (or reciprocal) trigonometric function of the cosine
His method was to show that the sine and cosine functions are alternating series formed from the even and odd terms respectively of the exponential series. He presented "Euler's formula", as well as near-modern abbreviations (sin., cos., tang., cot., sec., and cosec.). [30]
where is the inverse Gudermannian function, the integral of the secant function. There are a number of reasons why this particular antiderivative is worthy of special attention: The technique used for reducing integrals of higher odd powers of secant to lower ones is fully present in this, the simplest case. The other cases are done in the same ...