When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    negation: not propositional logic, Boolean algebra: The statement is true if and only if A is false. A slash placed through another operator is the same as placed in front. The prime symbol is placed after the negated thing, e.g. ′ [2]

  3. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    An example traditionally used by logicians contrasting sufficient and necessary conditions is the statement "If there is fire, then oxygen is present". An oxygenated environment is necessary for fire or combustion, but simply because there is an oxygenated environment does not necessarily mean that fire or combustion is occurring.

  4. Negation - Wikipedia

    en.wikipedia.org/wiki/Negation

    As a further example, negation can be defined in terms of NAND and can also be defined in terms of NOR. Algebraically, classical negation corresponds to complementation in a Boolean algebra, and intuitionistic negation to pseudocomplementation in a Heyting algebra. These algebras provide a semantics for classical and intuitionistic logic.

  5. Literal (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Literal_(mathematical_logic)

    A negative literal is the negation of an atom (e.g., ). The polarity of a literal is positive or negative depending on whether it is a positive or negative literal. In logics with double negation elimination (where ¬ ¬ x ≡ x {\displaystyle \lnot \lnot x\equiv x} ) the complementary literal or complement of a literal l {\displaystyle l} can ...

  6. Fitch notation - Wikipedia

    en.wikipedia.org/wiki/Fitch_notation

    2. A subsubproof: we are free to assume what we want. Here we aim for a reductio ad absurdum 3. We now have a contradiction 4. We are allowed to prefix the statement that "caused" the contradiction with a not 5. Our second subproof: we assume the r.h.s. to show the l.h.s. follows 6.

  7. Negation normal form - Wikipedia

    en.wikipedia.org/wiki/Negation_normal_form

    Negation normal form is not a canonical form: for example, () and () are equivalent, and are both in negation normal form. In classical logic and many modal logics , every formula can be brought into this form by replacing implications and equivalences by their definitions, using De Morgan's laws to push negation inwards, and eliminating double ...

  8. Logical equivalence - Wikipedia

    en.wikipedia.org/wiki/Logical_equivalence

    In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. [1] The logical equivalence of p {\displaystyle p} and q {\displaystyle q} is sometimes expressed as p ≡ q {\displaystyle p\equiv q} , p :: q {\displaystyle p::q} , E p q {\displaystyle {\textsf {E}}pq} , or p q ...

  9. Negation introduction - Wikipedia

    en.wikipedia.org/wiki/Negation_introduction

    Negation introduction is a rule of inference, or transformation rule, in the field of propositional calculus. Negation introduction states that if a given antecedent implies both the consequent and its complement, then the antecedent is a contradiction. [1] [2]