When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    The vector triple product is defined as the cross product of one vector with the cross product of the other two. The following relationship holds: The following relationship holds: a × ( b × c ) = ( a ⋅ c ) b − ( a ⋅ b ) c {\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )=(\mathbf {a} \cdot \mathbf {c} )\mathbf {b ...

  3. Vector algebra - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra

    In mathematics, vector algebra may mean: The operations of vector addition and scalar multiplication of a vector space; The algebraic operations in vector calculus (vector analysis) – including the dot and cross products of 3-dimensional Euclidean space; Algebra over a field – a vector space equipped with a bilinear product

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.

  5. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space. [1] A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane.

  6. Vector calculus - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus

    Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.

  7. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    For Minkowski addition, the zero set, {}, containing only the zero vector, 0, is an identity element: for every subset S of a vector space, S + { 0 } = S . {\displaystyle S+\{0\}=S.} The empty set is important in Minkowski addition, because the empty set annihilates every other subset: for every subset S of a vector space, its sum with the ...

  8. Comparison of vector algebra and geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_vector...

    Since the vector term of the vector bivector product the name dot product is zero when the vector is perpendicular to the plane (bivector), and this vector, bivector "dot product" selects only the components that are in the plane, so in analogy to the vector-vector dot product this name itself is justified by more than the fact this is the non ...

  9. Scalar multiplication - Wikipedia

    en.wikipedia.org/wiki/Scalar_multiplication

    Scalar multiplication of a vector by a factor of 3 stretches the vector out. The scalar multiplications −a and 2a of a vector a. In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra [1] [2] [3] (or more generally, a module in abstract algebra [4] [5]).