Ad
related to: how to interpret knn model in statistics analysis tool free image library
Search results
Results From The WOW.Com Content Network
The K-nearest neighbor classification performance can often be significantly improved through metric learning. Popular algorithms are neighbourhood components analysis and large margin nearest neighbor. Supervised metric learning algorithms use the label information to learn a new metric or pseudo-metric.
This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables. General tests [ edit ]
In 1951 Fix and Joseph Hodges, Jr. published their groundbreaking paper "Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties," which defined the nearest neighbor rule, an important method that would go on to become a key piece of machine learning technologies, the k-Nearest Neighbor (k-NN) algorithm .
Neighbourhood components analysis is a supervised learning method for classifying multivariate data into distinct classes according to a given distance metric over the data. Functionally, it serves the same purposes as the K-nearest neighbors algorithm and makes direct use of a related concept termed stochastic nearest neighbours .
The kNN query is one of the hardest problems on multi-dimensional data, especially when the dimensionality of the data is high. The iDistance is designed to process kNN queries in high-dimensional spaces efficiently and it is especially good for skewed data distributions, which usually occur in real-life data sets. The iDistance can be ...
k-nearest neighbor search identifies the top k nearest neighbors to the query. This technique is commonly used in predictive analytics to estimate or classify a point based on the consensus of its neighbors. k-nearest neighbor graphs are graphs in which every point is connected to its k nearest neighbors.
In statistical analysis, the nearest-neighbor chain algorithm based on following paths in this graph can be used to find hierarchical clusterings quickly. Nearest neighbor graphs are also a subject of computational geometry. The method can be used to induce a graph on nodes with unknown connectivity.
Waikato Environment for Knowledge Analysis (Weka) is a collection of machine learning and data analysis free software licensed under the GNU General Public License. It was developed at the University of Waikato , New Zealand and is the companion software to the book "Data Mining: Practical Machine Learning Tools and Techniques".