Ads
related to: introduction to lattice-based cryptography techniques pdf
Search results
Results From The WOW.Com Content Network
Lattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices, either in the construction itself or in the security proof. Lattice-based constructions support important standards of post-quantum cryptography . [ 1 ]
IEEE P1363 is an Institute of Electrical and Electronics Engineers (IEEE) standardization project for public-key cryptography. It includes specifications for: Traditional public-key cryptography (IEEE Std 1363-2000 and 1363a-2004) Lattice-based public-key cryptography (IEEE Std 1363.1-2008) Password-based public-key cryptography (IEEE Std 1363. ...
Post-quantum cryptography (PQC), sometimes referred to as quantum-proof, quantum-safe, or quantum-resistant, is the development of cryptographic algorithms (usually public-key algorithms) that are currently thought to be secure against a cryptanalytic attack by a quantum computer.
NTRU is an open-source public-key cryptosystem that uses lattice-based cryptography to encrypt and decrypt data. It consists of two algorithms: NTRUEncrypt, which is used for encryption, and NTRUSign, which is used for digital signatures.
In computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices.The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: lattice problems are an example of NP-hard problems which have been shown to be average-case hard, providing a test case for the security of cryptographic ...
Post-Quantum Cryptography Standardization [1] is a program and competition by NIST to update their standards to include post-quantum cryptography. [2] It was announced at PQCrypto 2016. [ 3 ] 23 signature schemes and 59 encryption/ KEM schemes were submitted by the initial submission deadline at the end of 2017 [ 4 ] of which 69 total were ...
The algorithm is based on the hardness of decoding a general linear code (which is known to be NP-hard [3]). For a description of the private key, an error-correcting code is selected for which an efficient decoding algorithm is known, and that is able to correct t {\displaystyle t} errors.
An early successful application of the LLL algorithm was its use by Andrew Odlyzko and Herman te Riele in disproving Mertens conjecture. [5]The LLL algorithm has found numerous other applications in MIMO detection algorithms [6] and cryptanalysis of public-key encryption schemes: knapsack cryptosystems, RSA with particular settings, NTRUEncrypt, and so forth.