Search results
Results From The WOW.Com Content Network
Following the edges in alphabetical order gives an Eulerian circuit/cycle. In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex.
Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path. An alternative form of the problem asks for a path that traverses all bridges and also has the same starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only if ...
In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an acyclic graph. A directed graph without directed cycles is called a directed ...
A circuit may refer to a closed trail or an element of the cycle space (an Eulerian spanning subgraph). The circuit rank of a graph is the dimension of its cycle space. circumference The circumference of a graph is the length of its longest simple cycle. The graph is Hamiltonian if and only if its circumference equals its order.
In order to prove this generalized form of the theorem, Petersen first proved that a 4-regular graph can be factorized into two 2-factors by taking alternate edges in a Eulerian trail. He noted that the same technique used for the 4-regular graph yields a factorization of a 2 k {\displaystyle 2k} -regular graph into two k {\displaystyle k ...
Hierholzer proved that a connected graph has an Eulerian trail if and only if exactly zero or two of its vertices have an odd degree. This result had been given, with no proof of the 'if' part, by Leonhard Euler in 1736. Hierholzer apparently presented his work to a circle of fellow mathematicians not long before his premature death in 1871.
The first use of "Eulerian circles" is commonly attributed to Swiss mathematician Leonhard Euler (1707–1783). In the United States, both Venn and Euler diagrams were incorporated as part of instruction in set theory as part of the new math movement of the 1960s.
In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).