Ads
related to: how to calculate surge pressure in water line for home heating device
Search results
Results From The WOW.Com Content Network
Effect of a pressure surge on a float gauge. Hydraulic shock (colloquial: water hammer; fluid hammer) is a pressure surge or wave caused when a fluid in motion is forced to stop or change direction suddenly: a momentum change. It is usually observed in a liquid but gases can also be affected.
Surge control line is the line which works as the indicating line for the surge control mechanism so that surge can be prevented in the system and proper steps can be taken. The line can vary for different surge control systems as it is up to the system to decide the margin between operating point and the surge point. [13]
Surge control products have been used in many industries to protect the maximum working pressure of hydraulic system for decades. Typical applications for surge relief equipment is in pipelines at pump stations, receiving manifolds at storage facilities, back pressure control, marine loading/off loading, site specific applications where pressure surges are generated by the automation system ...
Hydronic balancing, also called hydraulic balancing, is the process of optimizing the distribution of water in a building's hydronic heating or cooling system by equalizing the system pressure. In a balanced system every radiator is set to receive the proper amount of fluid in order to provide the intended indoor climate at optimum energy ...
This adverse pressure gradient naturally decelerates flows in the whole system and reduces the mass flow rate. The slope of a constant speed line near surge line is usually zero or even positive, which implies that the compressor cannot provide a much higher pressure as lowering the mass flow rate.
The former makes the IP compressor surge line shallower, swinging it away from the shallow working line, thus improving IP compressor surge margin. At a given IP compressor pressure ratio, opening the blow-off valve forces the IP compressor entry corrected flow to increase, to a point where the IP compressor surge margin tends to be better.
The water is heated and then routed into a reduced-pressure flash evaporation "stage" where some of the water flashes into steam. This steam is subsequently condensed into salt-free water. The residual salty liquid from that first stage is introduced into a second flash evaporation stage at a pressure lower than the first stage pressure.
Back pressure can force an undesirable contaminant to enter potable water piping. Sources of back pressure may be boilers, heat exchanging equipment, power washing equipment, fire sprinklers, or pumps in the water distribution system. In some cases there may be an almost continuous risk of overcoming the static water pressure in the piping.