When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Geosynchronous orbit - Wikipedia

    en.wikipedia.org/wiki/Geosynchronous_orbit

    Geosynchronous orbit. A geosynchronous orbit (sometimes abbreviated GSO) is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds (one sidereal day). The synchronization of rotation and orbital period means that, for an observer on Earth's surface, an object in ...

  3. Geostationary orbit - Wikipedia

    en.wikipedia.org/wiki/Geostationary_orbit

    A geostationary orbit, also referred to as a geosynchronous equatorial orbit[a] (GEO), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator, 42,164 km (26,199 mi) in radius from Earth's center, and following the direction of Earth's rotation. An object in such an orbit has an orbital period equal to Earth's ...

  4. Synchronous orbit - Wikipedia

    en.wikipedia.org/wiki/Synchronous_orbit

    A synchronous orbit around Earth that is circular and lies in the equatorial plane is called a geostationary orbit. The more general case, when the orbit is inclined to Earth's equator or is non-circular is called a geosynchronous orbit. The corresponding terms for synchronous orbits around Mars are areostationary and areosynchronous orbits.

  5. List of satellites in geosynchronous orbit - Wikipedia

    en.wikipedia.org/wiki/List_of_satellites_in...

    A satellite in a geostationary orbit appears stationary, always at the same point in the sky, to ground observers. Popularly or loosely, the term "geosynchronous" may be used to mean geostationary. [1] Specifically, geosynchronous Earth orbit (GEO) may be a synonym for geosynchronous equatorial orbit, [2] or geostationary Earth orbit. [3]

  6. List of orbits - Wikipedia

    en.wikipedia.org/wiki/List_of_orbits

    Geosynchronous (and geostationary) orbits have a semi-major axis of 42,164 km (26,199 mi). [10] This works out to an altitude of 35,786 km (22,236 mi). Both complete one full orbit of Earth per sidereal day (relative to the stars, not the Sun). High Earth orbit: geocentric orbits above the altitude of geosynchronous orbit (35,786 km or 22,236 mi).

  7. Geosynchronous satellite - Wikipedia

    en.wikipedia.org/wiki/Geosynchronous_satellite

    A geostationary satellite is in orbit around the Earth at an altitude where it orbits at the same rate as the Earth turns. An observer at any place where the satellite is visible will always see it in exactly the same spot in the sky, unlike stars and planets that move continuously. Geostationary satellites appear to be fixed over one spot ...

  8. Geostationary transfer orbit - Wikipedia

    en.wikipedia.org/wiki/Geostationary_transfer_orbit

    In space mission design, a geostationary transfer orbit (GTO) or geosynchronous transfer orbit is a highly elliptical type of geocentric orbit, usually with a perigee as low as low Earth orbit (LEO) and an apogee as high as geostationary orbit (GEO). Satellites that are destined for geosynchronous orbit (GSO) or GEO are often put into a GTO as ...

  9. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Kepler's laws of planetary motion. Illustration of Kepler's laws with two planetary orbits. The orbits are ellipses, with foci F1 and F2 for Planet 1, and F1 and F3 for Planet 2. The Sun is at F1. The shaded areas A1 and A2 are equal, and are swept out in equal times by Planet 1's orbit. The ratio of Planet 1's orbit time to Planet 2's is.