Search results
Results From The WOW.Com Content Network
Reduction of order (or d’Alembert reduction) is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solution is known and a second linearly independent solution is desired. The method also applies to n -th order equations. In this case the ansatz will yield an (n −1)-th order ...
The second derivative of a quadratic function is constant. In calculus, the second derivative, or the second-order derivative, of a function f is the derivative of the derivative of f. Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object ...
Hilbert's axioms are a set of 20 assumptions proposed by David Hilbert in 1899 in his book Grundlagen der Geometrie [1][2][3][4] (tr. The Foundations of Geometry) as the foundation for a modern treatment of Euclidean geometry. Other well-known modern axiomatizations of Euclidean geometry are those of Alfred Tarski and of George Birkhoff.
Calculus. In calculus, interchange of the order of integration is a methodology that transforms iterated integrals (or multiple integrals through the use of Fubini's theorem) of functions into other, hopefully simpler, integrals by changing the order in which the integrations are performed.
Symmetry of second derivatives. In mathematics, the symmetry of second derivatives (also called the equality of mixed partials) is the fact that exchanging the order of partial derivatives of a multivariate function. … n {\displaystyle f\left (x_ {1},\,x_ {2},\,\ldots ,\,x_ {n}\right)} does not change the result if some continuity conditions ...
Calculus. In mathematics, geometric calculus extends geometric algebra to include differentiation and integration. The formalism is powerful and can be shown to reproduce other mathematical theories including vector calculus, differential geometry, and differential forms.
The Lie derivative is the rate of change of a vector or tensor field along the flow of another vector field. On vector fields, it is an example of a Lie bracket (vector fields form the Lie algebra of the diffeomorphism group of the manifold). It is a grade 0 derivation on the algebra.
In mathematics, Abel's identity (also called Abel's formula[1] or Abel's differential equation identity) is an equation that expresses the Wronskian of two solutions of a homogeneous second-order linear ordinary differential equation in terms of a coefficient of the original differential equation. The relation can be generalised to n th-order ...