Search results
Results From The WOW.Com Content Network
where e is the eccentricity and l is the semi-latus rectum. As above, for e = 0, the graph is a circle, for 0 < e < 1 the graph is an ellipse, for e = 1 a parabola, and for e > 1 a hyperbola. The polar form of the equation of a conic is often used in dynamics; for instance, determining the orbits of objects revolving about the Sun. [20]
The latus rectum is defined similarly for the other two conics – the ellipse and the hyperbola. The latus rectum is the line drawn through a focus of a conic section parallel to the directrix and terminated both ways by the curve. For any case, is the radius of the osculating circle at the vertex. For a parabola, the semi-latus rectum, , is ...
The following image illustrates a circle (grey), an ellipse (red), a parabola (green) and a hyperbola (blue) A diagram of the various forms of the Kepler Orbit and their eccentricities. Blue is a hyperbolic trajectory (e > 1). Green is a parabolic trajectory (e = 1). Red is an elliptical orbit (0 < e < 1). Grey is a circular orbit (e = 0).
The universal parabolic constant is the red length divided by the green length. The universal parabolic constant is a mathematical constant.. It is defined as the ratio, for any parabola, of the arc length of the parabolic segment formed by the latus rectum to the focal parameter.
The length of the chord through one focus, perpendicular to the major axis, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows: [4] = = (). The semi-latus rectum is equal to the radius of curvature at the vertices (see section curvature).
The length of the chord through one of the foci, perpendicular to the major axis of the hyperbola, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows =. The semi-latus rectum may also be viewed as the radius of curvature at the vertices.
Pencil of confocal parabolas. From the definition of a parabola, for any point not on the x-axis, there is a unique parabola with focus at the origin opening to the right and a unique parabola with focus at the origin opening to the left, intersecting orthogonally at the point .
The green path in this image is an example of a parabolic trajectory. A parabolic trajectory is depicted in the bottom-left quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the parabolic trajectory is shown in red.