Search results
Results From The WOW.Com Content Network
Flavin mononucleotide (FMN), or riboflavin-5′-phosphate, is a biomolecule produced from riboflavin (vitamin B 2) by the enzyme riboflavin kinase and functions as the prosthetic group of various oxidoreductases, including NADH dehydrogenase, as well as a cofactor in biological blue-light photo receptors. [1]
The flavin moiety is often attached with an adenosine diphosphate to form flavin adenine dinucleotide (FAD), and, in other circumstances, is found as flavin mononucleotide (or FMN), a phosphorylated form of riboflavin. It is in one or the other of these forms that flavin is present as a prosthetic group in flavoproteins.
Two types of P450 systems are found in eukaryotes. The P450 systems that are located in the endoplasmic reticulum are dependent on a cytochrome P-450 reductase (CPR) that contains both an FAD and an FMN. The two electrons on reduced FAD (FADH 2) are transferred one at a time to FMN and then a single electron is passed from FMN to the heme of ...
Riboflavin is reversibly converted to FMN and then FAD. From riboflavin to FMN is the function of zinc-requiring riboflavin kinase; the reverse is accomplished by a phosphatase. From FMN to FAD is the function of magnesium-requiring FAD synthase; the reverse is accomplished by a pyrophosphatase. FAD appears to be an inhibitory end-product that ...
In enzymology, an FMN reductase (EC 1.5.1.29) is an enzyme that catalyzes the chemical reaction FMNH 2 + NAD(P)+ ⇌ {\displaystyle \rightleftharpoons } FMN + NAD(P)H + H + The 3 substrates of this enzyme are FMNH2 , NAD + , and NADP + , whereas its 4 products are FMN , NADH , NADPH , and H + .
The FMN riboswitch (also known as RFN element) is a highly conserved RNA element which is naturally occurring, and is found frequently in the 5'-untranslated regions of prokaryotic mRNAs that encode for flavin mononucleotide (FMN) biosynthesis and transport proteins.
Oxidative phosphorylation (UK / ɒ k ˈ s ɪ d. ə. t ɪ v /, US / ˈ ɑː k. s ɪ ˌ d eɪ. t ɪ v / [1]) or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP).
Main page; Contents; Current events; Random article; About Wikipedia; Contact us