Search results
Results From The WOW.Com Content Network
The number of arguments that a function takes is called the arity of the function. A function that takes a single argument as input, such as () =, is called a unary function. A function of two or more variables is considered to have a domain consisting of ordered pairs or tuples of argument values. The argument of a circular function is an angle.
3.6 Continued fraction expansion. 3.7 Factorial series. ... In many applications, the function argument is a real number, in which case the function value is also real.
The -th derivative of a function at a point is a local property only when is an integer; this is not the case for non-integer power derivatives. In other words, a non-integer fractional derivative of f {\displaystyle f} at x = c {\displaystyle x=c} depends on all values of f {\displaystyle f} , even those far away from c {\displaystyle c} .
Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...
The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers. The graph of the function a cosh( x / a ) is the catenary , the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
The gamma function is an important special function in mathematics.Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.
The arguments to a function are frequently surrounded by brackets: (). With some standard function when there is little chance of ambiguity, it is common to omit the parentheses around the argument altogether (e.g., sin x {\displaystyle \sin x} ).
In complex analysis, Gauss's continued fraction is a particular class of continued fractions derived from hypergeometric functions.It was one of the first analytic continued fractions known to mathematics, and it can be used to represent several important elementary functions, as well as some of the more complicated transcendental functions.