When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. PyMC - Wikipedia

    en.wikipedia.org/wiki/PyMC

    PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. It can be used for Bayesian statistical modeling and probabilistic machine learning.

  3. XGBoost - Wikipedia

    en.wikipedia.org/wiki/XGBoost

    It works on Linux, Microsoft Windows, [7] and macOS. [8] From the project description, it aims to provide a "Scalable, Portable and Distributed Gradient Boosting (GBM, GBRT, GBDT) Library". It runs on a single machine, as well as the distributed processing frameworks Apache Hadoop , Apache Spark , Apache Flink , and Dask .

  4. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [ 4 ] [ 5 ] It is based on decision tree algorithms and used for ranking , classification and other machine learning tasks.

  5. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  6. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    JAX is a machine learning framework for transforming numerical functions developed by Google with some contributions from Nvidia. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).

  7. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  8. Stan (software) - Wikipedia

    en.wikipedia.org/wiki/Stan_(software)

    CmdStanR and rstan – R software libraries, CmdStanPy and PyStan – libraries for the Python programming language, CmdStan.rb - library for the Ruby programming language, MatlabStan – integration with the MATLAB numerical computing environment, Stan.jl – integration with the Julia programming language, StataStan – integration with Stata.

  9. JMP (statistical software) - Wikipedia

    en.wikipedia.org/wiki/JMP_(statistical_software)

    The software's primary applications are for designed experiments and analyzing statistical data from industrial processes. [7] JMP can be used in conjunction with the R and Python open source programming languages to access features not available in JMP itself. [42] JMP software is partly focused on exploratory data analysis and visualization.