Search results
Results From The WOW.Com Content Network
In the NO − 3 anion, the oxidation state of the central nitrogen atom is V (+5). This corresponds to the highest possible oxidation number of nitrogen. Nitrate is a potentially powerful oxidizer as evidenced by its explosive behaviour at high temperature when it is detonated in ammonium nitrate (NH 4 NO 3), or black powder, ignited by the shock wave of a primary explosive.
A polar molecule has a net dipole as a result of the opposing charges (i.e. having partial positive and partial negative charges) from polar bonds arranged asymmetrically. Water (H 2 O) is an example of a polar molecule since it has a slight positive charge on one side and a slight negative charge on the other. The dipoles do not cancel out ...
As an example, summing bond orders in the ammonium cation yields −4 at the nitrogen of formal charge +1, with the two numbers adding to the oxidation state of −3: The sum of oxidation states in the ion equals its charge (as it equals zero for a neutral molecule). Also in anions, the formal (ionic) charges have to be considered when nonzero.
The rightmost structure in the diagram has a charge of -2 on the nitrogen atom. Applying the principle of electroneutrality this can be identified as only a minor contributor. Additionally as the most electronegative atom should carry the negative charge, then the triple bonded structure on the left is predicted to be the major contributor. [7]
An ion that has more electrons than protons, giving it a net negative charge, is named an anion, and a minus indication "Anion (−)" indicates the negative charge. With a cation it is just the opposite: it has fewer electrons than protons, giving it a net positive charge, hence the indication "Cation (+)".
A simple example of a polyatomic ion is the hydroxide ion, which consists of one oxygen atom and one hydrogen atom, jointly carrying a net charge of −1; its chemical formula is O H −. In contrast, an ammonium ion consists of one nitrogen atom and four hydrogen atoms, with a charge of +1; its chemical formula is N H + 4.
Formal charges in ozone and the nitrate anion. In chemistry, a formal charge (F.C. or q*), in the covalent view of chemical bonding, is the hypothetical charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity.
Ionic compounds generally have a high melting point, depending on the charge of the ions they consist of. The higher the charges the stronger the cohesive forces and the higher the melting point. They also tend to be soluble in water; the stronger the cohesive forces, the lower the solubility. [3]