When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch defines a class called Tensor (torch.Tensor) to store and operate on homogeneous multidimensional rectangular arrays of numbers.PyTorch Tensors are similar to NumPy Arrays, but can also be operated on a CUDA-capable NVIDIA GPU.

  3. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3]

  4. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    CUDA is designed to work with programming languages such as C, C++, Fortran and Python. This accessibility makes it easier for specialists in parallel programming to use GPU resources, in contrast to prior APIs like Direct3D and OpenGL , which require advanced skills in graphics programming. [ 6 ]

  5. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    Torch is an open-source machine learning library, a scientific computing framework, and a scripting language based on Lua. [3] It provides LuaJIT interfaces to deep learning algorithms implemented in C. It was created by the Idiap Research Institute at EPFL. Torch development moved in 2017 to PyTorch, a port of the library to Python. [4] [5] [6]

  6. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    Download QR code; Print/export ... Python, CUDA: Python , C/C++, ... Keras, Caffe, Torch: Algorithm training No No / Separate files in most formats No No No Yes ONNX:

  7. AMD Instinct - Wikipedia

    en.wikipedia.org/wiki/AMD_Instinct

    It supports the deep learning frameworks: Theano, Caffe, TensorFlow, MXNet, Microsoft Cognitive Toolkit, Torch, and Chainer. Programming is supported in OpenCL and Python, in addition to supporting the compilation of CUDA through AMD's Heterogeneous-compute Interface for Portability and Heterogeneous Compute Compiler.

  8. DeepSpeed - Wikipedia

    en.wikipedia.org/wiki/DeepSpeed

    The library is designed to reduce computing power and memory use and to train large distributed models with better parallelism on existing computer hardware. [2] [3] DeepSpeed is optimized for low latency, high throughput training.

  9. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    While the reference implementation runs on single devices, TensorFlow can run on multiple CPUs and GPUs (with optional CUDA and SYCL extensions for general-purpose computing on graphics processing units). [18] TensorFlow is available on 64-bit Linux, macOS, Windows, and mobile computing platforms including Android and iOS. [citation needed]