Search results
Results From The WOW.Com Content Network
Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Confounding variables may also be categorised according to their source. The choice of measurement instrument (operational confound), situational characteristics (procedural confound), or inter-individual differences (person confound). An operational confounding can occur in both experimental and non-experimental research designs. This type of ...
In statistics, the term "error" arises in two ways. Firstly, ... Secondly, it arises in the context of statistical modelling (for example regression) ...
The Heckman correction is a two-step M-estimator where the covariance matrix generated by OLS estimation of the second stage is inconsistent. [7] Correct standard errors and other statistics can be generated from an asymptotic approximation or by resampling, such as through a bootstrap. [8]
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
For example, for = 0.05 and m = 10, the Bonferroni-adjusted level is 0.005 and the Šidák-adjusted level is approximately 0.005116. One can also compute confidence intervals matching the test decision using the Šidák correction by computing each confidence interval at the ⋅ {\displaystyle \cdot } (1 − α) 1/ m % level.