Search results
Results From The WOW.Com Content Network
For example, multiplication is granted a higher precedence than addition, and it has been this way since the introduction of modern algebraic notation. [ 2 ] [ 3 ] Thus, in the expression 1 + 2 × 3 , the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7 , and not (1 + 2) × 3 = 9 .
If P, then Q. Not Q. Therefore, not P. The first premise is a conditional ("if-then") claim, such as P implies Q. The second premise is an assertion that Q, the consequent of the conditional claim, is not the case. From these two premises it can be logically concluded that P, the antecedent of the conditional claim, is also not the case. For ...
If P, then Q. P. Therefore, Q. The first premise is a conditional ("if–then") claim, namely that P implies Q. The second premise is an assertion that P, the antecedent of the conditional claim, is the case. From these two premises it can be logically concluded that Q, the consequent of the conditional claim, must be the case as well.
The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation. The rules can be expressed in English as: not (A or B) = (not A) and (not B) not (A and B) = (not A) or (not B) where "A or B" is an "inclusive or" meaning at least one of A or B rather than an "exclusive or" that means exactly one
Equivalently, if P is true or Q is true and P is false, then Q is true. The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts.
In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements.For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P.
The rule states that if the nonzero terms of a single-variable polynomial with real coefficients are ordered by descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign changes between consecutive (nonzero) coefficients, or is less than it by an even number.
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.