When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shockley–Queisser limit - Wikipedia

    en.wikipedia.org/wiki/ShockleyQueisser_limit

    The ShockleyQueisser limit, zoomed in near the region of peak efficiency. In a traditional solid-state semiconductor such as silicon, a solar cell is made from two doped crystals, one an n-type semiconductor, which has extra free electrons, and the other a p-type semiconductor, which is lacking free electrons, referred to as "holes."

  3. Multiple exciton generation - Wikipedia

    en.wikipedia.org/wiki/Multiple_exciton_generation

    Breakdown of the causes for the Shockley-Queisser limit. The black height is Shockley-Queisser limit for the maximum energy that can be extracted as useful electrical power in a conventional solar cell. However, a multiple-exciton-generation solar cell can also use some of the energy in the green area (and to a lesser extent the blue area ...

  4. Third-generation photovoltaic cell - Wikipedia

    en.wikipedia.org/wiki/Third-generation...

    For a two layer cell, one layer should be tuned to 1.64 eV and the other at 0.94 eV, with a theoretical performance of 44%. A three-layer cell should be tuned to 1.83, 1.16 and 0.71 eV, with an efficiency of 48%. A theoretical "infinity-layer" cell would have a theoretical efficiency of 68.2% for diffuse light. [11]

  5. Talk:Shockley–Queisser limit - Wikipedia

    en.wikipedia.org/wiki/Talk:ShockleyQueisser_limit

    The numbers are normally not similar as you suggest. But in any case, f c cannot be more than 1, and the upper limit (the Shockley-Queisser limit) requires taking f c = 1. Eric Kvaalen 19:05, 6 September 2016 (UTC) Yes, virtually all above-gap photons come from recombination, but not all recombinations create above-bandgap photons.

  6. Intermediate band photovoltaics - Wikipedia

    en.wikipedia.org/wiki/Intermediate_band...

    Intermediate band photovoltaics in solar cell research provides methods for exceeding the ShockleyQueisser limit on the efficiency of a cell. It introduces an intermediate band (IB) energy level in between the valence and conduction bands.

  7. Solar-cell efficiency - Wikipedia

    en.wikipedia.org/wiki/Solar-cell_efficiency

    The ShockleyQueisser limit for the efficiency of a single-junction solar cell under unconcentrated sunlight at 273 K. This calculated curve uses actual solar spectrum data, and therefore the curve is wiggly from IR absorption bands in the atmosphere. This efficiency limit of ~34% can be exceeded by multijunction solar cells.

  8. Thermodynamic efficiency limit - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_efficiency_limit

    Thermodynamic efficiency limit is the absolute maximum theoretically possible conversion efficiency of sunlight to electricity. Its value is about 86%, which is the Chambadal-Novikov efficiency , an approximation related to the Carnot limit , based on the temperature of the photons emitted by the Sun's surface.

  9. Hans-Joachim Queisser - Wikipedia

    en.wikipedia.org/wiki/Hans-Joachim_Queisser

    Hans-Joachim Queisser (born 6 July 1931, Berlin, Germany) is a solid-state physicist. He is best known for co-authoring the 1961 work on solar cells that detailed what is today known as the ShockleyQueisser limit, now considered the key contribution in this field. [1]