Search results
Results From The WOW.Com Content Network
The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a ...
The computational complexity of finding the Shannon capacity of such a channel remains ... This result is known as the Shannon–Hartley theorem. [11] When the SNR is ...
The channel capacity can be calculated from the physical properties of a channel; for a band-limited channel with Gaussian noise, using the Shannon–Hartley theorem. Simple schemes such as "send the message 3 times and use a best 2 out of 3 voting scheme if the copies differ" are inefficient error-correction methods, unable to asymptotically ...
the mutual information, and the channel capacity of a noisy channel, including the promise of perfect loss-free communication given by the noisy-channel coding theorem; the practical result of the Shannon–Hartley law for the channel capacity of a Gaussian channel; as well as; the bit—a new way of seeing the most fundamental unit of information.
In the above formula, P is measured in units of power, such as watts (W) or milliwatts (mW), and the signal-to-noise ratio is a pure number. However, when the signal and noise are measured in volts (V) or amperes (A), which are measures of amplitude, [ note 1 ] they must first be squared to obtain a quantity proportional to power, as shown below:
The Shannon capacity of a graph G is bounded from below by α(G), and from above by ϑ(G). [5] In some cases, ϑ(G) and the Shannon capacity coincide; for instance, for the graph of a pentagon, both are equal to √ 5. However, there exist other graphs for which the Shannon capacity and the Lovász number differ. [6]
Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise) This work is known for introducing the concepts of channel capacity as well as the noisy channel coding theorem. Shannon's article laid out the basic elements of communication:
Converse of Shannon's capacity theorem [ edit ] The converse of the capacity theorem essentially states that 1 − H ( p ) {\displaystyle 1-H(p)} is the best rate one can achieve over a binary symmetric channel.